Experience in Pharma Manufacturing? Get it Recognised with a TU Dublin University Certificate

Get that all-important Level 7 University Certificate in BioPharmaChem Manufacturing that proves your industry knowledge to employers and leaves you ready for that next promotion. Developed in consultation with the pharma industry including Pfizer and MSD. WINNER of Best Online Learning Experience at the Irish Education Awards 2018. University Accredited by TU Dublin Ireland.

  • Take full control of your career by combining a technical certificate (from TU Dublin) and a career planning module.

  • Be in charge of your study schedule with total flexibility on when and where to study.
  • Work with a small dedicated team that really cares about your success.
  • Application Deadline: Wednesday 19th April

  • Study online part-time – Complete 5 modules
  • 14 hrs/week for 37 weeks or choose a faster/slower schedule
  • Dedicated course leader who’ll check your progress at the end of every week and follow up with you to help you finish the course
  • Join 2290 Learners
TUD Logo

University Accredited by TU Dublin Ireland

Experience in Pharma Manufacturing? Get it Recognised with a TU Dublin University Certificate

Get that all-important Level 7 University Certificate in BioPharmaChem Manufacturing that proves your industry knowledge to employers and leaves you ready for that next promotion. Developed in consultation with the pharma industry including Pfizer and MSD. WINNER of Best Online Learning Experience at the Irish Education Awards 2018. University Accredited by TU Dublin Ireland.

TUD Logo
  • Take full control of your career by combining a technical certificate (from TU Dublin) and career planning module.
  • Be in charge of your study schedule with total flexibility on when and where to study.
  • Work with a small dedicated team that really cares about your success.
  • Application Deadline: Wednesday 19th April

  • Study online part-time – Complete 5 modules
  • 14 hrs/week for 37 weeks or choose a faster/slower schedule
  • Dedicated course leader who’ll check your progress at the end of every week and follow up with you to help you finish the course
  • Join 2290 Learners

University Accredited by TU Dublin Ireland

Our learners work for the world’s biggest pharma and medical device companies

Pfizer Logo

Abbott Logo

Novartis Logo

Lilly Logo

Roche Logo

Amgen Logo

Sanofi Logo

GSK Logo

Our learners work for the world’s biggest pharma and medical device companies

Pfizer Logo

Abbott Logo

Novartis Logo

GSK Logo

Lilly Logo

Novartis Logo

MSD Logo

Medtronic Logo

Takeda Logo

Abbvie Logo

Minimum Entry Requirements

This program is university accreditated by TU Dublin, Ireland so you need one of the following to meet its entry requirements:

  • You have worked in a Good Manufacturing Practice (GMP) regulated manufacturing environment e.g:
    • Pharmaceutical
    • Medical device
  • Or
  • You have industry experience in nutritional, beverage, food, dairy manufacturing or a relevant engineering or laboratory science degree.
    Or
  • You have successfully completed our Conversion Course into Pharmaceutical Manufacturing.

If you don’t meet TU Dublin’s entry requirements, first take our Conversion Course into Pharmaceutical Manufacturing Programme.

Certificate in eBioPharmaChem (DT 698)

Why choose the Certificate in BioPharmaChem?

We can guarantee you’ve never seen a programme like this before.

It’s a unique combination of:

  • A Level 7 technical certificate designed for the pharmaceutical manufacturing industry.

  • A career planning module that helps you identify your career goals and make plans for how to meet them.
  • A writing skills module that gives you essential workplace written communication skills and helps you complete the academic assessments.

You’ll find full course details further down this page)

Study at a time and place that suits you

All materials are delivered asynchronously online, meaning that you never have to be available at a certain time or place to study. There are no zoom classes and no long commutes to a classroom.

Whatever your current schedule – work, children, travel, caring responsibilities, shifts, volunteering, and even total unpredictability – as long as you can find approximately 12 hours per week, you can absolutely fit this programme in.

Study at your own pace

Your individual materials will be released by your dedicated Course Coordinator who’ll keep a weekly check on your progress. So you’ll never feel like you’re rushing to keep up with others and you’ll never be in a position where you feel overwhelmed by what’s waiting for you when you log in. Similarly, when you’ve got some extra time in your schedule you can move ahead more quickly by requesting additional materials. 

You will always be working at a pace that is comfortable for you.

Get started now

There’s no need to wait until the next academic year, we have multiple course start dates throughout the year to fit in with the schedules of the professionals we’re working with.

Why Choose GetReskilled?

We can also guarantee you’ve never worked with a team like this before. 

We’re a specialist company that works exclusively in the pharmaceutical manufacturing sector. So when you’re looking for a course to supplement your industry experience, our team are the specialists you need, every step of the way.  

Have your own “Personal Trainer”

You’ll be allocated a Course Coordinator who’ll work with you from day one until you successfully complete the programme. They’ll check in on your progress every week and will reach out if it looks like you’re losing momentum. They’ll be your single point of contact so you’ll never have to wonder where to go with a query. And they’ll be your biggest supporter – our course coordinators pride themselves on knowing their students by name and do anything they can to help them succeed.

Award Winning Programmes

We’ve won pharma industry awards… we’ve won education sector awards… we even placed 2nd in a Europe-wide vocational training award. Our team has published research and presented at international conferences.

All this is to say, the small size of our team hasn’t stopped us from making an impact. So you get the best of both worlds – the opportunity to study award-winning pharma industry content that is university accredited, from a small dedicated team who’ll be as invested in your success as you are. 

What roles could I retrain for?

STEP 1: Take this Level 7 “Unversity Certificate in BioPharmaChem Manufacturing” program. We have listed typical roles we see advertised on our jobs board:

If you just started in an entry-level role (process operator, cleanroom operator) you could retrain for:

  • Process Technician
  • Chemical Process Technician
  • BioProcess Technician
  • BioProcess Associate
  • Manufacturing Biotech Associate

And with more experience

If you have a few years work experience and want to move away from manufacturing roles:

  • Quality Assurance Specialist – Some companies call this role:
    • Quality Assurance Associate
    • Quality Assurance (QA) Technician
    • QMS/QA Specialist
    • Quality Systems Coordinator
  • Documentation Specialist – Some companies call this role:
    • Document Controller
    • Documentation Coordinator
  • Validation Technician – Some pharma companies call this role:
    • Associate QA Validation Specialist
    • Equipment Validation Specialist
    • QA Validation Associate
    • QA Validation Specialist
  • CQV Specialist – Some pharma companies call this role:
    • CQV Engineer
    • C&Q Specialist
    • C&Q Junior Project Manager

With validation, CQV and C&Q roles, you could work directly for:

  • pharmaceutical companies on in-house projects
  • engineering consultancies as part of a project team on small to large capital projects
  • engineering contractors as part of a project team on small to large capital projects
Pharma Manufacturing Essentials Course

Study all the way to a degree

Once you have completed the University Certificate in BioPharmaChem Manufacturing, take the next steps to build your qualification all the way to a degree.

STEP 2: Then you can take this “Certificate in Validation” program to move into more senior validation roles with a higher salary. Typical roles

  • Senior Validation Technician
  • CQV Technician

And with more work experience

  • Validation Engineer
  • Process Validation Engineer
  • Cleaning Validation Engineer

STEP 3: If you have completed our University Certificate in eBioPharmaChem Manufacturing and Certificate in Validation which are standalone programs, you are already halfway to a level 7 Degree. Take 6 more modules to get a BSc degree in Degree in Manufacture of Medicinal Products (DT 291)

Graphic of a jigsaw puzzle showing how GetReskilled courses work together to build a degree

Your 37-week class schedule

The core content of these modules was developed in consultation with the pharma industry including Pfizer and MSD.

Module 1 – Fundamentals of Pharmaceutical Manufacturing Technologies 

This module will give you a broad understanding of pharmaceutical manufacturing technologies, the rules that govern manufacturing and the guidelines on how these rules are applied along with the risk management tools to be used when making decisions that could impact the safety of the medicines being manufactured.

  • 1-1 Finished Medicinal Products
    In this lesson, we learn about medical products and the various ways drug products are administered.
  • 1-2 Introduction to Quality Risk Management (QRM)
    In this lesson, we will develop an understanding of the history and the crucial importance of risk management as well as the basic steps involved in its application.
  • 1-3 Fault Tree Analysis (FTA) – step 4 “Workshop’ exercise
    In this lesson, we learn about the risk management tool ‘Fault Tree Analysis’ and see an example of where and how we can use it.
  • 1-4 Clinical Trials
    In this lesson, we will gain an understanding of the purpose of clinical trials and learn about their four phases.
  • 1-5 Focus on Patient Safety and Product Quality
    In this class, we will develop a deeper understanding of the importance of patient safety and product quality for medicines and medical devices.
  • 1-6 Process Validation
    In this lesson, we will learn about the various definitions of ‘validation’, as well as for ‘commissioning’, ‘qualification’, and ‘verification.

Deliverables

  • Complete a workshop on Fault Tree Analysis (FTA).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 2-1 ISPE Baseline Guide 5 – Commissioning Practices
    In this lesson, we learn about the commissioning and qualification of manufacturing equipment systems in the pharmaceutical industries and about the importance of doing system impact and component impact assessments.
  • 2-2 ISPE Baseline Guide 5 – Qualification Practices
    In this lesson, we look again at system and component impact assessment and specifically describe the qualification practices associated with direct impact systems that directly impact on product quality and patient safety.
  • 2-3 ISPE Baseline Guide 5 – Enhanced Design Review (EDR) / (DQ)
    In this lesson, we learn how to do a documented review of the design of the overall process and facility systems for conformance to operational and regulatory expectations.
  • 2-4 Cause and Effect – step 4 ‘Workshop’ exercise
    In this lesson, we learn about the risk management tool ‘Cause and Effect’ and see an example of where and
    how we can use it.
  • 2-5: ISO 9001:2008
    This lesson is about the key requirements of quality management systems.
  • 2-6: Good Engineering Practices (GEP)
    In this presentation, we will develop an understanding of good engineering practices, and learn about some various organizations that produce them.
  • 2-7: ASTM E 2500 – Standard Guide for Specification, Design and Verification
    In this lesson, we will describe a specification, design, and verification approach for equipment systems associated with the pharmaceutical, biopharmaceutical and medical device industries.

Deliverables

  • Complete a workshop on Cause and Effect (Fishbone Diagram).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 3-1: GAMP5 – Software Category
    This lesson, looks at the various GAMP categories of software and a ‘v-model’ approach to software projects? It also recommends a method on how to describe a critical computerized system to the regulatory authorities.
  • 3-2: GAMP5 – Scalable Validation Deliverables
    In this lesson, the general content of a computerized validation plan and a summary report is described. Described also is the ‘system implementation lifecycle’ (SILC) and the ‘software development lifecycle’ (SDLC) with associated validation deliverables.
  • 3-3: GAMP5 – Operation Activities
    This lesson describes the typical procedural activities associated with all commercial computerized systems in the operational stage of the lifecycle
  • 3-4: Failure Mode, Effects (and Criticality) Analysis (FMEA / FMEAC) – step 4 ‘Workshop’ exercise
    This presentation shows an example of the main steps in performing a ‘Failure Mode, Effects Analysis’ (FMEA) and describes how this risk management technique summarizes the important modes of (a) failure, (b) factors causing these failures, and (c) the likely effects of these failures.
  • 3-5: GAMP5 – Risk-Based Decision Making
    This lesson explains how to apply risk-based decisions, making over the lifecycle of a computerized system: from the concept phase and through the project phase, into the operational phase and finally to the decommissioning stage.
  • 3-5: Product Quality and Current Good Manufacturing Practices [ cGMP]
    In this lesson, we learn how to scientifically define product quality. This lesson also gives an insight into the high-level principles of current good manufacturing practices (cGMP).

Deliverables

  • Complete a workshop on Failure Mode Effect Analysis (FMEA).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 4-1: Chemical Reactions
    In this lesson, we describe chemical reactions and list the substances involved, and explain what the rate-controlling steps are.
  • 4-2: Separation Technologies
    In this lesson, we explain how to purify a dissolved compound from a mixture of substances using ‘liquid-liquid extraction’, ‘phase separations’ and ‘crystallization’.
  • 4-3: Batch Organic Chemical Synthesis
    In this lesson, we describe the typical equipment and process stages of the manufacture of active pharmaceutical ingredients (API) using batch organic chemistry synthesis.
  • 4-4: Preliminary Hazard Analysis (PHA) – step 4 ‘Workshop’ exercise
    This lesson, explains when and how to do a Preliminary Hazard Analysis (PHA) study on a project to analyze hazards, and suggests how to document the process and who should conduct the study.
  • 4-5: Multi-Stage Sequence API Synthesis
    In this lesson, we explore the typical sequence of deriving an API product using batch organic chemical synthesis and the types of facilities used
  • 4-6: API Regulatory Guidelines
    In this lesson, we describe the characteristics of a GMP that can be followed to manufacture an API.
  • 4-7: Relationship Between BPC and API
    In this lesson, we describe the similarities and differences between the terms ‘Active Pharmaceutical Ingredients’ (API) and ‘Bulk Pharmaceutical Chemicals’ (BPC), and we mention some typical material controls?

Deliverables

  • Complete a workshop on Preliminary Hazard Analysis (PHA).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 5-1: Biopharmaceuticals Manufacturing, Upstream, Fermentation
    This lesson describes a conventional biotechnological process and introduces the following process sequences:
  • Stage-I – Upstream Processing
  • Stage-II – Fermentation / Bio-reaction
  • Stage-III – Downstream Processing
  • 5-2: Cellular Protein Synthesis
    This lesson explains the sequence of how a protein is created at a cellular level in terms of its contents and folded structure, and explains the template information necessary for its assembly process.
  • 5-3: Hazard Operability Analysis (HAZOP) – step 4 ‘Workshop’ exercise
    In this lesson, we will watch a practical application of HAZOP that will identify process risk events that are caused by deviations from a system’s design or operating intentions. It is a systematic brainstorming technique for identifying hazards using so-called “guide-words” (e.g., No, More, Other Than, Part of, etc.) and applying them to relevant parameters (e.g., contamination, temperature) to help identify potential deviations from normal use or design intentions.
  • 5-4: Downstream Processing – Column Chromatography
    This lesson describes the basic principle behind the following column chromatography techniques:

    • Size Exclusion Chromatography (SEC).
    • ‘Ionic Exchange Chromatography (IEX).
    • Hydrophobic Interaction Chromatography (HIC).
    • ‘Affinity Chromatography
  • 5-5: Biopharmaceuticals Manufacturing: Special Considerations
    This lesson looks at general considerations for a conventional biopharmaceutical process in terms of cell line preservation and viral barrier and viral clearance techniques.

Deliverables

  • Complete a workshop on Hazard Operability Analysis (HAZOP).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 6-1: Engineering Aspects of Cleaning, and Cleaning Equipment
    This lesson discusses how to clean and decontaminate surfaces using CIP (clean-in-place), agitated Immersion, static Immersion (Soaking), automated parts washers, ultrasonic cleaning, high-pressure spraying, and manual cleaning.
  • 6-2: Chemistry Aspects of Cleaning
    This lesson explores chemistry aspects of cleaning in terms of solubility, solubilisation, emulsification, dispersion, wetting, hydrolysis, oxidation and physical removal.
  • 6-3: Event Tree Analysis (ETA) – step 4 ‘Workshop’ exercise
    This lesson explores the application of Event tree analysis (ETA). Event tree analysis is an analysis technique for identifying and evaluating the sequence of events in a potential accident scenario following the occurrence of an initiating event. ETA utilizes a visual logic tree structure known as an event tree. The objective of ETA is to determine whether the initiating event will develop into a serious mishap or if the event is sufficiently controlled by the safety systems and procedures implemented in the system design.
  • 6-4: Cleaning Validation
    This lesson takes a high-level look at a typical cleaning validation sequence. It looks at how to determine the basis for quantification limits and explains how to determine cleanliness levels on the basis of the analytical testing of representative samples. Sampling is described in terms of sampling-equipment, sampling -locations, and sampling –procedures.
  • 6-5: ISO-9001 ‘Continual Improvement’ & ICH Q10 Pharmaceutical Quality System
    This lesson explains the concept of ‘continual improvement’ as part of a company’s quality management system and describes an effective corrective action process and a preventive action process (CAPA). It also gives details on the product-lifecycle for a pharmaceutical product and describes the monitoring of process performance and product quality.

Deliverables

  • Complete a workshop on Event Tree Analysis (ETA).
  • Complete a question booklet that will summarise what you have learnt for the week and help ensure you retain and understand the information.
  • 7-1: Tablet Manufacturing
    In this lesson, we will explore the critical process parameters and quality attributes associated with the manufacture of medicinal tablets.
  • 7-2: Vial Filling & Freeze Drying
    In this lesson, we will explore the critical process parameters and quality attributes associated with the filling of a medicinal vial and its subsequent freeze-drying.
  • 7-3: FDA Medical Device Rules – CFR 820
    In this lesson, we look at how the FDA classifies medical devices and explore the basis of that classification system.
  • 7-4: Hazard Analysis and Critical Control Points (HACCP) – step 4 ‘Workshop’ exercise
    In this lesson, we are going to look at a full risk management process called Hazard Analysis and Critical
    Control Points (HACCP) and develop an understanding of the seven steps involved.
  • 7-5: Medical Devices – EU Classification
    In this lesson, we look at how medical devices are classified in the European Union, and we explore the basis of the classification system.
  • 7-6: Aseptic & Sterile Manufacturing